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Interpretation of Sachs - GE(Q2) is Fourier transform of 
charge density

Correct non-relativistic:
wave function  invariant under Galilean 
transformation, BUT IT IS WRONG

-

Relativistic :  wave function is frame 
dependent, initial and final states differ
interpretation of Sachs FF is wrong

Final wave function is boosted from initial

Need relativistic treatment

R2 = −6
dGE(Q2)

dQ2
|Q2=0
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Scalar meson M, made of two scalar mesons, m
IF (M-2m)/M, small non-relativistic works 
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FIG. 5: Exact vs non-relativistic Form factors for the case m1 = m2 = m.

where the coupling constants and other constants enter in such a manner as to make FNR(Q2 = 0) = 1.
We study the non-relativistic approximation, by comparing the exact model results Eq. (17) with those of the

non-relativistic approximation Eq. (69). See Fig. IXA.
The figure shows two sets of results. In the upper panel the binding energy B = 0.002 M . This corresponds roughly

to deuteron kinematics, in which the binding energy is of the order of a 0.004 of the deuteron mass. We see that
the non-relativistic approximation is not accurate for values of Q2/M2 greater than about 1. If one increases the
binding energy to 0.1 M , one sees that the non-relativistic approximation is not accurate for any value of Q2. If one
approximates a nucleon by taking M = 1 GeV, then m = 0.55 GeV, which is much larger than a constituent quark
mass.

We can gain some insight into the nature of the relativistic corrections to the charge radius by studying the low Q2

limit of the form factor of Eq. (8). One finds

lim
Q2→0

F (Q2) = 1 − Q2R2

6
, (70)

with
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1
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)
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16
((
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The non-relativistic limit corresponds to the limit of small values of γ, which corresponds to a small value of B/M .
So we expand the previous result to order B/M to find

M2R2 ≈
(

12288− 2816π2 + 195π4
)
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√
2

√
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M π

+
M

4B
(73)

deuteron kinematics are 
non-relativistic: extract neutron 
structure function should be 
possible

Relativity needed

Toy model  GAM, Phys.Rev.C80:045210,2009.   

(M-2m)/M=0.002

(M-2m)/M=0.1

On the Relationship Between Electromagnetic Form Factors and Charge Densities
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An exact covariant simple model is used to elucidate various issues.
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I. INTRODUCTION

The text-book interpretation of these form factors is that their Fourier transforms are measurements of the charge
and magnetization densities. But the initial and final nuclei have different momentum, and therefore different wave
functions. This is because the relativistic boost operator that transforms a nucleus at rest into a moving one changes
the wave function in a manner that depends on the momentum of the nucleon. The presence of different wave functions
of the initial and final nucleons invalidates a probability or density interpretation.

Infinemomentum frame method history-me carlson carlson
Nuclei are very heavy expect relativistic effects are small.
Present analysis.
A proper determination of a charge density requires that the quantity be related to the square of a wave function

or of a field operator. The technical solution to the problem of determining the relevant density operator has been
known for a long time [3], and has been elegantly explained recently[5, 6]

The charge density ρ(b) [7] of partons in the transverse plane is a two-dimensional Fourier transform of the F1 form
factor. Here we present the first phenomenological analysis of existing data to determine ρ(b) for 3He and 3H. Carlson
and M. Vanderhaeghen,V and C have done the deuteron [8].

II. EXACT FORM FACTORS USING A SIMPLE MODEL

The model Lagrangian is given by gΨφ ξ where Ψ, φ and ξ represent three scalar fields of masses M, m1 and m2

respectively and g is a coupling constant One can take two or three of these fields to carry charge to make up a system
of definite charge (including the neutral case). We begin with the case that Ψ, φ carry a single positive charge and ξ
is neutral. The form factor F (q2) for a space-like incident photon of four-momentum qµ (q2 < 0, Q2 = −q2), incident

P P+q

q

k

P!k

k+q

1

2

FIG. 1: Feynman diagram for the form factor with the photon coupling to the particle of mass m1.
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“Time”, x+ = x0 + x3, “Evolve”, p− = p0 − p3

“Space”, x− = x0 − x3, “Momentum”, p+(Bjorken)
Transverse position, momentum b,p

Light front, Infinite momentum frame

These variables are used in GPDs, TMDs, standard variables

transverse boosts in kinematic subgroup
k→ k− k+v

space− like qµ, q+ = 0,

momentum transfer in transverse direction

then density is 2 Dimensional  
Fourier Transform
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J+(x−,b) =
∑

q

eqq
†
+(x−, b)q+(x−, b)

ρ∞(x−,b) = 〈p+,R = 0, λ|
∑

q

eqq
†
+(x−, b)q+(x−, b)|p+,R = 0, λ〉

ρ(b) ≡
∫

dx−ρ∞(x−,b) =
∫

QdQ

2π
F1(Q2)J0(Qb)

F1 = 〈p+,p′, λ|J+(0)|p+,p, λ〉

Density is u− ū, d− d̄

Model independent transverse charge density

•
5

Charge Density

Soper ’77
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Impact parameter dependent GPD Burkardt

6

Probability that quark at b from CTM has long momentum fraction x 

ρq(b, x) =
∫

d2q

(2π)2
e−iq·bHq(x, t = q2)

ρ(b) =
∑

q

eq

∫
dxρq(b, x)

R = 0 =
N∑

i

xibi

Quark of x=1, must have b=0

 sum rule: integral
of Hq  

Transverse density is integral over longitudinal position or momenta
example of Parseval’s theorem

0 skewness, ξ = 0

is F
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Transverse charge densities from 
parameterizations (Alberico)
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Figure 4
Nucleon ρ(b). (a) Proton transverse charge density. (b) Neutron transverse charge density. These densities
are obtained by using the parameterization of Reference 91.

by a nonzero value of Q2, no matter how small, because the momentum difference between the
initial and final states appears via the use of derivatives of momentum-conserving delta functions
in the moments computed in Reference 85. Any attempt to analytically incorporate relativistic
corrections in a p2/m2

q type of expansion would be doomed by the presence of the quark mass mq

to be model dependent. This feature is explained more thoroughly in References 6 and 86.
We exploit Equation 31 by using measured form factors to determine ρ(b). Recent parameter-

izations (87–91) of GE and GM are very useful, so we use Equation 43 to obtain F1 in terms of GE,
GM . Then ρ(b) can be expressed as a simple integral of known functions,

ρ(b) =
∫ ∞

0

d Q Q
2π

J0(Qb)
GE (Q2) + τGM (Q2)

1 + τ
, 44.

where τ = Q2

4M 2 and J0 is a cylindrical Bessel function.
A straightforward application of Equation 44 to the proton using the parameterizations of

Reference 91 yields the results shown in Figure 4a. The curves obtained by using the two different
parameterizations overlap. Furthermore, there seems to be negligible sensitivity to form factors
at very high values of Q2 that are currently unmeasured. The density is peaked at low values of b
but contains has a long positive tail, suggesting a long-ranged, positively charged pion cloud.

The neutron results are shown in Figure 4b. The curves obtained by using the two different
parameterizations seem to overlap. Surprisingly, the central neutron charge density is negative.
The values of the integral of Equation 44 are somewhat sensitive to the regime 8 < Q2 < 16 GeV2,

14 Miller
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Neutron
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Figure 5
Neutron F1 and bρ(b). (a) F1(Q2). (b) bρ(b). The solid light brown curves are obtained using fit 1 of
Reference 91, and the dashed green curves are obtained by using fit 2 of the same reference.

for which GE is as yet unmeasured. Approximately 30% of the value of ρ(0) arises from this region.
That ρ(b = 0) < 0 was confirmed in References 80 and 92–94.

The negative central density deserves further explanation. See Figure 5a, which shows F1 for
the neutron from two parameterizations of Reference 91. In both cases, F1 is negative (because
of the dominance of the GM term of Equation 44) for all values of Q2. This feature, along with
taking b = 0 so that J0(Qb) = 1 in Equation 44, immediately leads to the central negative result.
The long-range structure of the charge density is captured by displaying the quantity bρ(b) in
Figure 5b. At very large distances from the center, bρ(b) < 0, which suggests the existence of the
long-ranged pion cloud. Thus, the neutron transverse charge density displays an unusual behavior,
in which the positive charge density in the middle region is sandwiched by negative charge densities
at the inner and outer reaches of the neutron. A simple model in which the neutron fluctuates
into a proton and a π− parameterized to reproduce the negative-definite nature of the neutron’s
F1 (95) reproduces the negative transverse central density. In this case, the negative nature arises
from pions that penetrate to the center. The change from the nominal positive value obtained
from GE can be understood as originating in the boost to the IMF (86).

One can gain information about the individual u and d quark densities by invoking charge
symmetry [invariance under a rotation by π about the z (charge) axis in isospin space (96–99)] and
by neglecting the effects of s s̄ pairs (100). Model-independent information about nucleon structure
is thereby obtained and shows, surprisingly, that the central density of the neutron is negative.
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Neutron charge density: why?
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---

+
ρ(b)

b (GeV −1)
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Neutron interpretation
• Impact parameter gpd Burkardt
•  Drell-Yan-West relation between high x DIS 

and high Q2 elastic scattering
• High x related to low b, not uncertainty principle

• Various (reasonable) assumptions needed: 
power-law wave functions. Is this relationship 
valid?

10

ρ(x, b)

lim
x→1

νW2(x) = (1− x)2n−1 ↔ lim
Q2→∞

F1(Q2) ∼ 1
Q2n

, n = 2

?????

π DYW : F (Q2) ∼ 1
Q2
→ νW2 = (1− x)

But Reimer data (1− x)2
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Structure functions

11

• d quarks dominate DIS from neutron at high x
• d quarks dominate at neutron center, or π−

Density is u− ū, d− d̄
π− is ūd
decreases u contribution
enhances d contribution

Friday, October 15, 2010



Neutron interpretation ρ(x,b)  
GAM, J. Arrington, PRC78,032201R  ’08

x=0.1 x=0.3

x=0.5

d or        dominates at high x, low bπ−

Using other people’s models

Friday, October 15, 2010



Neutron interpretation
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  d d
  u 

π−π-
uu

d

or
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Understand b: quark and 
spectator system

14

1!x

b / (1! )xr =
b

x

u

d

Several values of x,
little variation

Model dependent

ρ(b = r(1− x), x)
ρ(0, x)

RAPID COMMUNICATIONS

GERALD A. MILLER AND JOHN ARRINGTON PHYSICAL REVIEW C 78, 032201(R) (2008)

FIG. 4. (Color online) The u and d quark contributions to
ρ

Spec,n
⊥ (Brel, x), see Eq. (12), vs Brel for x = 0.1 (solid), 0.3 (long-

dash), 0.5 (short-dash), and 0.7 (dotted). The curves are scaled to
unity at Brel = 0. Here the quark flavor refers to the neutron (u in the
proton is d in the neutron).

from the struck quark to the spectator quarks:

x1b1 +
∑

i>1

xibi = xb + (1 − x)bspec = 0, (10)

Brel = b − bspec = b
(1 − x)

= Brel. (11)

We exhibit the dependence on Brel by defining the function

ρ
Spec
⊥ (Brel, x) ≡ ρ⊥(Brel(1 − x), x), (12)

which gives the probability that a struck quark of longitudinal
momentum fraction x is a distance Brel away from the spectator
center of momentum. Figure 4 shows this rescaled version of
ρ⊥(b), with the contribution at each x value normalized to unity

at b = 0. The quantity ρ
Spec
⊥ (Brel, x) cannot be determined in a

model-independent manner, but may be a better approximation
to our intuitive picture of the charge distribution, as it removes
the influence of the struck quark on defining the center of the
nucleon. While the charge distribution coming from very low x
quarks has a greater spatial extent, the decreasing width of the
ρ⊥(b) distribution for large x quarks is essentially completely
removed when looking at Brel.

Before concluding, it is worthwhile to comment on the
relation between the present work and the difference between
the electric and magnetic radii of the proton [9]. In the model-
independent, IMF approach presented here, the electric and
magnetic transverse radii have a clear connection to F1 and
F2 and a Foldy [26] term causes a difference between the
transverse radii. The Foldy term is responsible for most of
the charge radius defined by GE . Understanding the neutron’s
negative central density is more subtle and requires knowledge
of ρ(x, b).

We summarize our findings with the statement that, using
the model GPDs of Refs. [17–19], the dominance of the
neutron’s d quarks at high values of x leads to a negative
contribution to the charge density which, due to the definition
of b, becomes localized near the center of mass of the neutron.
This localization does not appear when examined as a function
of the position of the struck quark relative to the spectators.
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useful discussions. We thank the ECT∗ for hosting a workshop
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Summary
• Much data exist, Jlab12 will improve data set
• Charge density is not a 3 dimensional Fourier 

transform of GE 

• Interpret form factor as determining transverse 
charge density

• Neutron: Negative central density
• Full understanding needs 
• Center of neutron: d or 
• Is Drell-Yan, West relation valid?

ρ(b, x)

π−

Friday, October 15, 2010



Spares follow
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Transverse charge densities

BBBA

Kelly

Negative
Friday, October 15, 2010



GPD :

〈P ′, S′|
∫

dx−

4π
q̄(−x−

2
,0)γ+q(

x−

2
,0)eixp̄+x− |P, S〉

=
1

2p̄+
ū(P ′, S′)

(
γ+Hq(ξ, t) + i

σ+ν∆ν

2M
Eq(x, ξ, t)

)
u(P, S)

TMD :

ΦΓ
q (x =

k+

P+
,k) = 〈P, S|

∫
dζ−d2ζ

2(2π)3
eik·ζ q̄(0)Γq(ζ)|P, S〉ζ+=0

x+ = 0

Relation or not between GPD and TMD

18

GPD: nucleons have different momenta, but FT local in coordinate 
space if integrate over x

TMD: nucleons have same momenta, operator is 
local in momentum space
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Hq(x, ξ, t) = 〈P ′, S′|
∫

d2k
(2π)2

W γ+

q (ζ− = 0, ζ = 0, k+,k)|P, S〉

ΦΓ
q (x,k) = 〈P, S|

∫
dζ−

(2π)2
WΓ

q (ζ−, ζ, k+,k)|P, S〉

WΓ
q (ζ−, ζ, k+,k)

=
1
4π

∫
dη−d2ηeik·η q̄(ζ− − η−

2
, ζ − η

2
)Γq(ζ− +

η−

2
, ζ +

η

2
)

Both can be obtained Wigner distribution operator

19
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